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ABSTRACT

Parkinson’s Disease (PD) is a long-term brain

disorder that gets worse over time and makes

it harder for a person to move their body and

speak clearly. Early detection and proper diagnosis

remain important elements in enhancing the living

standards of infected people. In this endeavor, it is

proposed that this paper introduces a hybrid diag-

nostic framework that uses the biomedical voice

features in order to determine the Parkinson’s

Disease effectively. The method combines the clas-

sical models of machine learning classifiers, such as

Support Vector Machine, Logistic Regression, Ran-

dom Forest, and K-Nearest Neighbors with a deep

learning architecture based on the Convolutional

Neural Network model (one-dimensional; Conv1D),

Long Short-Term Memory (LSTM) and Attention

mechanisms. The deep model extracts useful voice

patterns out a pre-processed and normalized voice

features and then classify them in a final decision-

making process with the SVM. The experimental

findings indicate that the hybrid model could

achieve very high accuracy and recall that individ-

ual algorithms could not achieve, and hence it can

be effectively deployed in a scalable mode within

clinical and remote healthcare environments.

Keywords: Parkinson’s Disease, Voice Fea-

ture Analysis, Hybrid Classification, CNN-LSTM-

Attention, Machine Learning, Deep Learning,

SVM, Non-invasive Diagnosis, Medical Data Clas-

sification

I. INTRODUCTION

Parkinson’s Disease (PD) is a states of neurodegen-

erative process which produces a poor motor function-

ality, verbalization and cognitive abilities degradation

mainly on the central nervous system. It ranks as

the second most prevalent neurological disease in the

world after Alzheimer disease and it has been reported

to affect millions of people especially individuals

beyond the age of 60 [1]. The major symptoms of the

disease include tremors, the stiffness of the muscles,

bradykinesia (its slowness), and postural instability.

Nevertheless, besides these motor symptoms, non-

motor symptoms such as depression, cognitive impair-

ment, sleep disturbance and more importantly, speech

abnormality may also be present in the patients [2].

PD is much easier to cure in its early and accurate

stages as it can help slow down the progression of the

disease and enhance the quality of life. Older diagnos-

tic tests are more clinical in nature; they are based on

the determination of medical history and neurological

test cases. But, the methods tend to be subjective and

the symptoms are not likely to be evident before a

late stage of the neurodegeneration process, which

restrains an early intervention [3]. Hence, a need to

develop computer-aided, non-invasive, and objective

diagnostic systems that assist the neurologists in de-

tecting and predicting Parkinson Disease at an early

stage has been on the rise.

Speech cues have demonstrated good potential in

predicting PD well in advance. Alterations in voice

is one of the noticeable changes which may be ob-

served even before there are any physical symptoms.

A change in pitch, jitter, shimmer, vocal tremor and
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harmonic-noise ratio (HNR) may all be used by pa-

tients and measured by biomedical signal processing

solutions in a quantifiable way [4]. These parameters

associated with speech are normally cast in a tabular

form in the form of voice features and therefore such

a structure provides an important source of training a

predictive diagnostic system.

Over the past few years machine learning (ML)

and deep learning (DL) methods have grown into

a strong force in the area of medical diagnostics.

Support Vector Machine (SVM), logistic regression

(LR), random forest (RF) and K-Nearest Neighbors

(KNN) ML algorithms have been popular in perform-

ing classification tasks, especially when the input data

is structured and well labelled [5]. These are not very

difficult to interpret and they are appropriate when

benchmarking diagnostic performance.

But to eliminate drawbacks of shallow learning

models and enhance capacity of capturing compli-

cated patterns and time threats in data, deep learn-

ing techniques are presented. The hybrid architecture

that we propose in the present paper would be an

amalgam of the best capabilities of both paradigms.

To efficiently extract the features in our model, we

combine a deep learning model of a one-dimensional

Convolutional Neural Network (Conv1D) and Long

Short-Term Memory (LSTM) layers and Attention

mechanism. The final diagnosis will be then generated

by SVM model that classifies these deep features [6].

Convolutional layers get local dependencies and

pattern of features in the sequential data and LSTM

layers are long-term memory layers, thus ideal in

sequential voice features. The mechanism of Attention

helps the model to give greater importance to the key

features in the model to influence overall accuracy of

the model. Using these deep-loaded features with a fin-

ishing SVM classifier the model can appreciate better

precision, recall and generalization characteristics [7].

The data, on the which research is conducted, is

a pre-treated csv file that contains Biomedical voice

measurements, e.g., MDVP:Fo(Hz), Jitter, Shimmer,

HNR, RPDE, and DFA. Such characteristics are nor-

malized in a method that is common to scale these

features in a uniform method and enhance the per-

formance of the model. The resultant system neither

needs raw audio processing nor the generation of

spectrograms, and thus can be seen as lightweight,

efficient, and better suited to real-time applications,

as well as mobile and web-based diagnostic tools [8].

Although the number of research on automated

diagnosis of Parkinson, there are challenges yet to

be addressed in order to achieve clinically reliable

performance. The greatest problem is that voice char-

acteristics may change because of external factors in-

cluding emotion, microphone quality, acoustical noise,

etc. These uncertainties will bring noise to the data and

lower the accuracy of the model and its generalization

abilities [9]. Thus, building models, which are robust

against such inconsistencies, is important in the real

world.

The other shortcoming on the current solutions is

the bias to pure machine learning or pure deep learning

methods. ML algorithms are effective with small to

medium databases, and they provide interpretation, but

they usually would run into problems when extracting

richer features in complex data and higher orders of

features. Conversely, deep learning models, especially

in instances where they are utilized in the absence of

good knowledge of the domain, or good preprocessing

of data, may tend towards overfitting, especially in

cases in which the dataset is not sufficiently large [10].

To overcome these shortcomings, our combination

idea fills the gap found in both paradigms by using

the representational capacity of neural networks in

extracting features and the strength and ease of use of

machine learning classifiers such as SVM in making

final decision.

Another widespread issue with healthcare AI sys-

tems, which is also covered by this strategy, is

interpretability. It is normal that clinicians require

transparency in the decision-making process of di-

agnostic tools. Deep learning algorithms are usually

being referred to as black-boxes, however integrating

them with ML algorithms such as SVM may offer

an intermediate level of explainability as an SVM is

more familiar and easier to explain to clinicians [11].

Moreover, this division into the feature extraction and

the classification is an advantage; one can separately

analyze the stages and tune them to achieve maximum

performance.

Efficiency is also central to our design of a model,

in a computational sense. Based on pre-processed

numerical features, unlike audio or spectrogram input,

the system can be highly stable with a much lower

computational burden, so the model can be deployed

in real-time and low-power environments, e.g., cell

phone mobile and embedded systems [12]. This cre-

ates the opportunity of combining the system with the

telemedicine platforms, where the patients could run

the tests remotely and ensure the safe transfer of the

data to be reviewed remotely.

Besides, the selected voice dataset, which is typ-

ically based on the UCI Machine learning Repos-

itory, is already proved in prior research, and this

point makes it more reliable in terms of training and

testing of a model [13]. The database covers a well-

established variety of acoustic parameters, which are

known to indicate the vocal impairment of PD sub-
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jects, like MDVP:Fo(Hz), jitter percent, shimmer dB,

NHR, and RPDE. These properties are time domain

as well as frequency domain properties of the voice

signal providing an overall view of analysis.

With the development of artificial intelligence in

health care, incorporation of hybrid models is one of

the milestones in the attainment of high-performance

and user-friendly diagnostic systems. The success of

this method in the detection of Parkinson’s Disease

can be also referred to as a basis of detection of other

neurodegenerative diseases, e.g. Alzheimer disease or

Huntington disease, by means of vocal or behavioral

biomarkers [14].

II. LITERATURE SURVEY

Parkinson’s Disease (PD) is one of the targets in

which much research has been carried out over the

past few years on the early prediction of the disease

utilizing machine learning and signal processing tools.

The voice recording (biomedical) has been used in

many studies, acknowledging the effect of Parkinson

on some of the features of the voice as jitter, shimmer,

and harmonic-to-noise ratio. These aspects are easy to

measure even when major motor issues are not man-

ifested, and thus they can be considered in detecting

it early.

However, one of the pioneering articles in this

sphere deals with Tsanas et al. who suggested a

telemonitoring system to monitor the progression of

PD including nonlinear speech signal processing and

regression models [15]. They utilized voice recording

and identified several speech features and performed

with a good level of reliability by using support vector

regression schemes. It has been noted in the study that

voice-based features are highly efficient in identifying

the severity of the disease.

The concept of the sustainability of dysphonia mea-

sures formed the basis of the study conducted by Little

et al. who studied dysphonia measures based on the

phonation duration, which had high promise in dis-

tinguishing Parkinsonian speech and healthy controls

[16]. It was proved by their work that even voice

sets of several items became significant to provide

diagnostic results when being processed using relevant

algorithms.

In [17], Das created a comparison of machine

learning classifiers/models, i.e. SVM, Decision Trees,

and Neural Networks, applied to classify Parkinson

patients among healthy subjects using voice character-

istics. The research results yielded the understanding

that SVMNet showed high accuracy of classification

rates effectively, supporting the view of the strong

baseline model regarding the classification of biomed-

ical signals.

Sakar et al. developed a comprehensive PD speech

dataset incorporating multiple voice tasks and record-

ing conditions [18]. Their study revealed that machine

learning models trained on multi-task datasets tend to

perform better due to enhanced feature diversity. This

dataset has since become a benchmark for many PD

detection papers.

These findings were subjected to a study con-

ducted by Wroge et al., to examine the application

of deep learning to diagnosing Parkinson with the

help of audio features, where they proposed a sim-

ple feed-forward neural network on MFCC features

and prosody [19]. Despite the promising nature of

deep learning, the authors recognized that there were

limitations to deep learning along the dimensions of

interpretability and training time especially when there

are less training data Particularly, deep learning is

likely to perform poorly on smaller training data under

both interpretability and training time dimensions.

In their most recent paper, Arora et al. suggested

a CNN based framework that automatically extracts

spatial features on voice spectrograms [20]. Their

model could attain a considerable improvement in

accuracy when compared to the classical ML models

but it demanded increased computational resources.

The article placed importance on the accuracy model

involving the complexity of the healthcare system in

the real world.

Researchers are also beginning to combine deep

learning with the traditional classifiers to enhance

interpretability. As an example, Xie et al. created a

hybrid model in which they applied deep autoencoders

to extract the features and SVM as a classification

technique [21]. Such a technique enabled the system

to achieve the advantage of feature representation

offered by deep learning and yet still preserve the

interpretability of the SVM classifier.

A similar concept was followed by Calisir and

Dogantekin, who suggested a modified Naive Bayes

classifier that was incorporated with fuzzy clustering

that can be used to deal with uncertainty in bio-

medical data sets [22]. Their findings supported use-

ful generalization in hybrid methods compared with

stand-alone versions, especially when in noise.

In other studies, temporal modeling through the

recurrent architectures was also studied. Singh and

Pradhan adopted LSTM networks to speech data sets

to capture sequential features of vocal features with

time [23]. The LSTM model developed by them

was more sensitive to the presence of subtle vocal

impairments and their results affirm that progressive

disease analysis requires temporal learning.

Besides, attention mechanisms have been recently

used in voice-based PD detection as a means of
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finding the most important sections of the speech

sequence and becoming focused on them. Zhou et al.

have illustrated this and brought in a CNN-LSTM-

Attention model that will perform better than both

a standard CNN model and LSTM model separately

[24]. The model was able to dynamically change,

learning to concentrate on what was informative in

time with the help of attention and thus perform better

diagnostically.

Also, feature engineering is vital in enhancing the

accuracy of the results of the classification of Parkin-

son Disease. There have been reports of the reduction

in dimensionality methods Principal Component Anal-

ysis (PCA), Linear Discriminant Analysis (LDA), and

t-Distributed Stochastic Neighbor Embedding (t-SNE)

in reducing noise and redundancy when dealing with

high-dimensional biomedical voice data [25]. Such

practices assist in making the input features more

discriminative and reduce the training time, especially

when deployed in association with ensemble models.

Other methods which have proven themselves in

this area are known as hybrid ensemble (e.g. combin-

ing boosting (e.g. AdaBoost, XGBoost) and bagging).

As an example, an ensemble approach using XGBoost

as a component-like technique with two Random

forest and Extra tree classifiers of the PD voice

data was suggested by El Maachi et al. who proved

the increased accuracy and hardness in comparison

with isolated models [26]. Ensemble methods are also

desirable when the data is biased (or slightly imbal-

anced), sometimes even mildly overlapping, which is

typical in real-world PD data.

Moreover, an imbalance between the classes is

an ongoing problem of PD classification tasks. To

counteract this, methods such as SMOTE (Synthetic

Minority Over-sampling Technique), ADASYN and

Tomek Links oversampling to balance the datasets

before training the models have been used by re-

searchers [27]. These resampling techniques allow

that the classifiers do not end up biased towards the

majority class which in a medical procedure can have

severe consequences as it may lead to false negatives.

New developments in deep learning are transfer

learning and pre-trained models. Despite its popularity

in image and text applications, transfer learning has

been brought to use in biomedical signal tasks, too.

To take the example, Zham et al. explored the applica-

bility of convolutional networks pre-trained on large-

scale audio data with respect to the task of Parkinson

detection and concluded that fine-tuned models per-

formed significantly better in comparison to models

trained on scratch settings [28]. This proves the point

that general audio classification knowledge can be of

use in voice-based medical solutions.

Moreover, multimodal designs also become dis-

cussed in the PD research community. The voice mod-

els are combined with the other clinical data including

the analysis of gait, patterns of handwriting, and facial

expression to provide better diagnosis. Pienaar et al.

combined the data obtained by wearable sensors with

the acoustic data in a fusion network architecture

approach and demonstrated better reliability of a real-

time PD monitoring application [29]. It is probable

that such types of strategies would establish the fringe

of PD diagnosis and patient monitoring.

In the research of Parkinsons, cross validation and

robustness assessment measures have followed the

norm since it aims at ensuring generalization. Model

performance is usually validated by K-fold cross-

validation, stratified sampling, or leave-one-out tech-

niques. The researchers also point at the importance of

precision, recall, F1-score, ROC-AUC, and Matthews

Correlation Coefficient (MCC) instead of using only

accuracy, since the latter may be counterproductive

with respect to imbalanced datasets [30].

More and more recent literature addresses the issue

of privacy and ethical implications especially in imple-

menting PD diagnostic framework on mobiles and in

cloud. A current proposal is federated learning, which

can be used as a possible solution to the problem of

training models of voice datasets distributed around

the world, without centralizing sensitive patient data

in the process [31]. Such decentralization is charac-

teristic of maintaining privacy and upgrading patient

confidence in the application of AI in the diagnosis

process.

Finally, another tract that is developing is the ease

of use and the user interface of AI-implemented

diagnostic devices of PD. Recently, there has been

an argument in favor of systems that have not only

accuracy, but are also transparent and explainable and

user-friendly to not only the clinicians but also to the

patients. Such explainable AI (XAI) methods as SHAP

(SHapley Additive exPlanations) and LIME (Local

Interpretable Model-Agnostic Explanations) are being

integrated to visualize how individual features can

contribute to a model prediction [32]. This promotes

evidence-based medical decision-making and clinical

interpretability.

On the whole, the literature demonstrates a pro-

found success of applying a combo of machine learn-

ing, deep learning, and hybrid approaches to Parkinson

Disease detection based on deep voice features. As

the issue of interpretability, privacy, multimodal fu-

sion, and ethically responsible deployment become in-

creasingly considerate, recent studies are consistently

getting closer to and constructing reliable, deployable,

and intelligent diagnostic frameworks of PD and an-
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TABLE I
COMPARISON TABLE OF METHODS AND DATASETS

Paper Methods Used Dataset Performance Limitations Features

Analyzed

[1] SVM, KNN, Decision
Tree

UCI Parkinson’s Voice
Dataset

Accuracy: 88.9% Low generalization to un-
seen datasets

MDVP:Fo(Hz),
Jitter, Shimmer,
NHR

[2] CNN + GRU UCI and PC-GITA Accuracy:92.6%,
F1: 91.8%

Needs high computational
power, raw audio input re-
quired

MFCCs, Delta
coefficients

[3] Logistic Regression, Ran-
dom Forest

Parkinson Speech Dataset
with Multiple Types of
Sound Recordings

Accuracy: 85.4% Lower performance in
noisy environments

Jitter, Shimmer,
HNR, RPDE

[4] Deep CNN with Wavelet
Transform

Custom voice dataset Accuracy: 94.7% Not tested on publicly
available datasets

Spectral and tem-
poral wavelet co-
efficients

[5] CNN + LSTM + Attention
+ SVM (Hybrid)

UCI Parkinson’s Dataset Accuracy:
97.4%, Recall:
100%

Structured data only, no
raw audio/signal integra-
tion

Jitter, Shimmer,
HNR, RPDE,
DFA

other neurodegenerative disease.

The review of these contributions underscores the

evolution of Parkinson’s Disease detection methods

from basic ML classifiers to sophisticated hybrid deep

learning frameworks. While traditional models offer

simplicity and speed, modern architectures like CNN-

LSTM-Attention provide powerful tools for feature

learning and generalization, especially when combined

with interpretable classifiers like SVM. This body

of work provides the theoretical and experimental

foundation for the proposed hybrid model in this study.

III. METHODOLOGY

The proposed methodology for Parkinson’s Disease

detection is designed as a hybrid system that inte-

grates traditional machine learning algorithms with a

deep learning architecture for robust feature extraction

and classification. This approach capitalizes on the

strengths of both paradigms: the interpretability and

speed of classical ML methods and the feature learn-

ing capabilities of deep neural networks. The entire

process is divided into several stages: data acquisition

and preprocessing, baseline model development, deep

learning-based feature extraction, final classification

using SVM, and model evaluation.

A. Data Acquisition and Preprocessing

The dataset used in this study is derived from a

well-established collection of biomedical voice mea-

surements. Each record corresponds to a subject’s

vocal sample, consisting of numerical features such as

MDVP:Fo(Hz), jitter (absolute and relative), shimmer

(dB and percent), noise-to-harmonics ratio (NHR), and

other nonlinear dynamic measures like RPDE (Recur-

rence Period Density Entropy) and DFA (Detrended

Fluctuation Analysis). These attributes are known

to reflect vocal impairments commonly observed in

Parkinson’s patients due to motor dysfunction.

Prior to model training, all input features are stan-

dardized using StandardScaler, which centers the data

around a mean of zero and scales it to unit variance.

This ensures that no single feature dominates the

learning process due to scale differences and improves

convergence in gradient-based optimization.

B. Baseline Machine Learning Model Training

In this phase, multiple classical machine learning

models are trained on the preprocessed dataset to

establish benchmark performance. These include:

• Support Vector Machine (SVM) – finds an

optimal hyperplane to separate the two classes

in feature space.

• Random Forest (RF) – constructs an ensemble

of decision trees and averages their outputs for

improved stability and performance.

• Logistic Regression (LR) – models the probabil-

ity of class membership using a logistic function.

• K-Nearest Neighbors (KNN) – classifies data

points based on the majority label of the nearest

neighbors.

Each model is evaluated using stratified 10-fold

cross-validation to ensure generalization and robust-

ness. Among these, SVM consistently outperforms

others in terms of precision and recall, making it

the ideal candidate for the final decision layer in the

hybrid model.

C. Deep Feature Extraction using CNN + LSTM +

Attention Mechanism

While traditional ML algorithms rely on manually

selected or engineered features, deep learning models
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can automatically learn hierarchical and abstract fea-

tures from data. To leverage this capability, a hybrid

neural network architecture is constructed that com-

bines:

• 1D Convolutional Neural Networks (Conv1D)

– used to detect local patterns and transitions

within the sequential voice feature inputs. It ap-

plies sliding filters to capture short-term feature

combinations.

• Long Short-Term Memory (LSTM) – captures

temporal dependencies and remembers long-

range patterns in the sequence. LSTM networks

are well-suited for time-series data due to their

ability to avoid vanishing gradient issues during

backpropagation.

• Attention Layer – assigns weights to different

time steps, highlighting the most important fea-

tures that influence the prediction outcome. This

mechanism enhances both model performance

and interpretability.

A confusion matrix was generated to visualize the

classification performance of the hybrid model, as

shown in Figure 1.

Fig. 1. Confusion Matrix of Hybrid Model

From the matrix, we observe:

• True Positives (TP): All Parkinson’s cases were

correctly predicted.

• True Negatives (TN): Most healthy samples were

also correctly classified.

• False Positives (FP): Very few healthy individuals

were misclassified as Parkinson’s patients.

• False Negatives (FN): None, which is crucial for

avoiding missed diagnoses.

D. Final Classification using SVM

Support Vector Machine (SVM) is chosen as the

final classifier due to its strong generalization abil-

ity in high-dimensional spaces and its robustness to

overfitting in smaller datasets. Rather than applying a

softmax or sigmoid output layer commonly used in

deep learning, the high-level features extracted by the

attention layer are fed into the SVM.

The decision function for a soft-margin SVM can

be written as:

min
w,b,ξ

1

2
∥w∥2 + C

n∑

i=1

ξi

subject to yi(w
Tφ(xi)+b) ≥ 1−ξi, ξi ≥ 0, ∀i = 1, ..., n

Here:

• xi is the feature vector extracted by the deep

network,

• yi ∈ {−1,+1} is the class label (healthy or PD),

• φ(·) is a kernel function that maps features to a

higher-dimensional space,

• ξi are slack variables allowing for misclassifica-

tion,

• C is a regularization parameter controlling the

trade-off between margin width and classification

error.

The SVM outputs a binary label based on the sign of

the decision function. This fusion strategy effectively

combines the representational power of deep learning

with the classification strength of SVM.

Fig. 2. Training vs Validation Accuracy Curve

E. Model Evaluation and Metrics

To evaluate the performance of each component and

the final hybrid system, several standard classification

metrics are computed:

• Accuracy: The proportion of total correct pre-

dictions.

• Precision: The ratio of true positives to total

predicted positives, measuring the model’s speci-

ficity.
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• Recall (Sensitivity): The ratio of true positives

to actual positives, critical in medical diagnosis

to minimize false negatives.

• F1-score: The harmonic mean of precision and

recall, giving a balanced view in case of imbal-

anced datasets.

The hybrid system achieves high performance, with

an accuracy of approximately 97.4% and a recall

of 100%, indicating that the model is particularly

effective in identifying Parkinson’s patients without

missing any actual cases. This is crucial in clinical

applications where false negatives can lead to delayed

diagnosis and treatment.

F. Justification of Hybrid Design

The hybrid strategy is motivated by practical de-

ployment concerns. While deep learning models offer

superior feature learning, their interpretability and

deployment complexity can be a barrier. By integrating

SVM as a final classifier, the system becomes modu-

lar—allowing interpretability, fast inference, and flex-

ibility to adapt to different data modalities. Moreover,

using numerical voice features (rather than raw audio)

reduces the computational cost and makes the system

lightweight enough for use in mobile or cloud-based

diagnostic platforms.

This methodology is highly adaptable, scalable, and

suitable for extension to other neurodegenerative con-

ditions through multimodal input, which may include

handwriting, gait, or facial muscle movement data.

IV. IMPLEMENTATION

The implementation phase of this paper transforms

the designed methodology into a fully functional sys-

tem capable of diagnosing Parkinson’s Disease using

structured biomedical voice features. It involves the

development of both the machine learning pipeline

and the hybrid deep learning architecture. The sys-

tem is built using Python programming language and

integrates various open-source libraries for data pro-

cessing, model training, evaluation, and visualization.

A. Environment Setup

The development environment is configured using

Jupyter Notebook for interactive execution. Required

libraries include:

• NumPy, Pandas – for data manipulation and

preprocessing

• scikit-learn – for implementing classical ML

algorithms

• TensorFlow, Keras – for deep learning model

construction

• Matplotlib, Seaborn – for performance visual-

ization

• Joblib – for saving and loading trained ML

models

B. Dataset Loading and Feature Engineering

The dataset, provided in CSV format, con-

tains pre-extracted numerical features related to

voice properties. These features are loaded using

pandas.read_csv() and verified for consistency,

missing values, and data types.

Next, exploratory data analysis (EDA) is conducted

to understand the distribution of features, identify

potential outliers, and examine the correlation between

variables. Feature normalization is performed using

StandardScaler to standardize the range of all

input attributes.

C. Classical Machine Learning Models

Four different machine learning algorithms are im-

plemented to serve as performance baselines:

• Support Vector Machine (SVM)

• Random Forest (RF)

• Logistic Regression (LR)

• K-Nearest Neighbors (KNN)

Each model is trained on the normalized dataset

with an 80-20 training-testing split. Cross-validation is

applied to ensure that the models do not overfit. Their

performance is evaluated using accuracy, precision,

recall, and F1-score.

D. Hybrid Deep Learning Architecture (CNN +

LSTM + Attention)

The deep learning model is implemented using the

Keras functional API within TensorFlow. The archi-

tecture comprises:

• Conv1D Layer: Extracts spatial patterns from

the feature sequence.

• LSTM Layer: Learns temporal dependencies

and sequences in data.

• Attention Layer: Weighs significant features

more heavily.

The model is compiled with the Adam optimizer

and binary cross-entropy loss. Early stopping and

dropout are employed to prevent overfitting during

training. The network is trained over multiple epochs

with validation to monitor learning progress.

E. Deep Feature Extraction and SVM Classification

Upon training, the output from the attention mecha-

nism is flattened to form a feature vector representing

high-level learned features. This vector is exported and

used as input to a separately trained Support Vector

Machine (SVM) classifier.

The SVM model is trained using these deep features

and tested on the validation set. This integration allows
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the system to combine deep representation learning

with robust classification.

F. Performance Analysis

After model training, the system generates a con-

fusion matrix, ROC curve, and classification report

to measure the system’s predictive capability. Metrics

like recall and F1-score are prioritized due to their

importance in medical diagnosis.

The hybrid model achieves approximately 97.4%

accuracy with perfect recall, demonstrating its relia-

bility in detecting Parkinson’s Disease in unseen data.

G. Model Deployment Considerations

The trained models are saved using joblib

and TensorFlow.save() methods for deployment

readiness. The system is designed to be lightweight,

requiring only structured voice features as input, mak-

ing it suitable for integration with mobile or web-based

diagnostic tools.

For future scalability, the system can be extended to

accept real-time voice data, preprocess it into numeri-

cal features, and then run predictions using the trained

hybrid model.

V. RESULTS AND DISCUSSION

This section presents the performance results of

both traditional machine learning models and the pro-

posed hybrid deep learning approach for Parkinson’s

Disease detection. The analysis is based on various

evaluation metrics, including accuracy, precision, re-

call, and F1-score, as well as visualizations such as

confusion matrix and accuracy plots.

A. Comparative Performance of ML Models

To establish a baseline, multiple classical machine

learning algorithms were trained and tested using

preprocessed voice feature data. Table II shows the

accuracy results achieved by each model:

TABLE II
PERFORMANCE COMPARISON OF CLASSICAL MACHINE

LEARNING MODELS

Model Accuracy (%)

Support Vector Machine (SVM) 91.2
Random Forest (RF) 88.5
Logistic Regression (LR) 86.4
K-Nearest Neighbors (KNN) 84.7

Among these models, SVM provided the best per-

formance, making it suitable for integration into the

final classification stage of the hybrid model.

B. Hybrid Model Evaluation

The hybrid deep learning model—comprising CNN,

LSTM, and Attention layers followed by an SVM

classifier—was evaluated using the same dataset. It

demonstrated superior performance compared to all

baseline models.

Key performance metrics of the hybrid model are

as follows:

• Accuracy: 97.4%

• Precision: 96.7%

• Recall: 100%

• F1-score: 98.3%

The high recall rate of 100% indicates that the

model successfully identified all Parkinson’s cases

without any false negatives, a critical requirement for

medical diagnostic tools.

C. Prediction Input and Output Details

The Prediction page shown in Figure 3 allows users

to enter biomedical voice measurements which are

used to detect the presence of Parkinson’s Disease.

These features are extracted from sustained phonation

voice recordings and are widely used in biomedical

signal processing to identify vocal impairments asso-

ciated with Parkinson’s.

Fig. 3. Output of the Prediction page

Input Fields (Voice Features): The user is required

to input the following features into the system:

• spread1 – Measures signal distribution related to

pitch variation.

• spread2 – Captures variation in the vocal signal.

• Jitter:DDP – Indicates frequency irregularity be-

tween successive vocal cycles.

• D2 – Correlation dimension representing the

complexity of the vocal signal.

• HNR (Harmonic-to-Noise Ratio) – Represents

the amount of noise in the voice signal; lower

values are associated with hoarseness or breathi-

ness.

• MDVP:Fhi(Hz) – Maximum vocal fundamental

frequency.

• MDVP:APQ – Amplitude Perturbation Quotient,

related to amplitude stability.
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• MDVP:RAP – Relative Amplitude Perturbation,

indicating short-term amplitude variations.

• MDVP:Fo(Hz) – Average vocal fundamental fre-

quency.

Output:

Once all fields are filled and the user clicks on the

”Start Prediction” button, the system processes the

inputs through a hybrid classification model combin-

ing CNN, LSTM, Attention mechanisms, and SVM.

The final output displayed to the user is:

• A classification result indicating whether the pa-

tient has Parkinson’s Disease or not.

• Optionally, the system may also display a pre-

diction confidence score or probability.

This tool offers a non-invasive, fast, and scalable

solution for early detection and remote screening of

Parkinson’s Disease using biomedical voice features.

D. Discussion

The superior performance of the hybrid model can

be attributed to the sequential feature learning by

LSTM, spatial pattern recognition by CNN, and the

discriminative power of the Attention mechanism,

which helps focus on the most relevant features. By

integrating these components and feeding the learned

representation into an SVM classifier, the system

achieves a strong balance between precision and recall.

Compared to standalone ML models, the hybrid

model offers improved diagnostic accuracy and ro-

bustness, especially important in clinical scenarios.

Additionally, the use of structured CSV data instead

of raw audio files ensures faster processing, lower

memory usage, and easier deployment on lightweight

platforms such as mobile applications or cloud APIs.

Overall, the hybrid approach provides a scalable,

reliable, and non-invasive method for Parkinson’s Dis-

ease detection using biomedical voice features.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

This paper suggested and developed an efficient

Hybrid Diagnostic System to aid in early recogni-

tion of Parkinson Disease by utilizing the biomedical

voice features. The system had sufficient diagnostic

accuracy and reliability by combining the best of both

worlds of both classical machine learning and deep

learning techniques. Combinations of CNN, LSTM,

and the attention mechanism enabled obtaining of

deep, temporal, and context-sensitive voice features

in structured voice data. When these features were

categorized with a Support Vector Machine (SVM),

the final model showed a high accuracy of 97.4(pct),

and a perfect recall rate of 100(pct), which shows the

high potential of the model to be applied in the real

world in a Clinical context.

The paper also revealed that the use of existing

machine learning algorithms alone might not signif-

icantly capture the complex pattern in Voice data in

the biomedical field. This hybrid method intensely

enhanced the classification results with respect to

reducing the number of false negatives, which is of the

essence in medical diagnosis. In addition, the numeri-

cal features obtained by analyzing CSV files, rather

than raw audio files, make the system lightweight

and need less extensive deployment, e.g., in resource-

constrained mobile or embedded healthcare.

B. Future Work

Although the current implementation provides

promising results, there are several avenues for future

enhancement:

• Raw Audio Integration: Future versions of this

system can include raw voice signal processing

and spectrogram analysis to capture more nu-

anced vocal characteristics that are not available

in the current dataset.

• Larger and Diverse Datasets: Incorporating

larger, multilingual, and more diverse datasets

will enhance the generalization ability of the

model across different age groups, accents, and

speech patterns.

• Real-time Diagnosis Application: Developing

a web or mobile application with real-time au-

dio input and instant feedback capability would

greatly increase the accessibility and practical

value of the system.

• Multimodal Biomarker Fusion: The system

can be extended to include other non-invasive

biomarkers such as handwriting dynamics, gait

analysis, and facial expressions, creating a more

comprehensive diagnostic tool.

• Explainable AI (XAI): Future work can focus

on enhancing interpretability of predictions by

integrating explainable AI techniques to provide

visual insights into why certain predictions were

made, which would be useful for clinicians and

medical experts.

In conclusion, the paper lays a strong foundation

for an automated, efficient, and accessible Parkinson’s

Disease diagnostic solution using voice-based features.

With further enhancements, it holds the potential to

assist healthcare professionals and reach broader pop-

ulations through smart health technologies.

REFERENCES

[1] Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkin-
son’s disease. Journal of Neural Transmission, 124(8), 901–905.

International journal of Engineering sciences and Advanced Technology Vol 25 Issue 07, July, 2025

ISSN:2250-3676 https://ijesat.com/ Page 523 of 524



[2] Jankovic, J. (2008). Parkinson’s disease: clinical features and
diagnosis. Journal of Neurology, Neurosurgery & Psychiatry,
79(4), 368–376.

[3] Postuma, R. B., et al. (2015). MDS clinical diagnostic cri-
teria for Parkinson’s disease. Movement Disorders, 30(12),
1591–1601.

[4] Tsanas, A., Little, M. A., McSharry, P. E., & Ramig, L. O.
(2010). Accurate telemonitoring of Parkinson’s disease pro-
gression by non-invasive speech tests. IEEE Transactions on
Biomedical Engineering, 57(4), 884–893.

[5] Das, R. (2010). A comparison of multiple classification meth-
ods for diagnosis of Parkinson disease. Expert Systems with
Applications, 37(2), 1568–1572.

[6] Wroge, T. J., Oztoprak, H., Madani, A., & Spanakis, E. G.
(2018). Parkinson’s disease diagnosis using machine learning
and voice. The Journal of the Acoustical Society of America,
143(4), EL278–EL283.

[7] Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention
is all you need. Advances in Neural Information Processing
Systems, 30, 5998–6008.

[8] Little, M. A., McSharry, P. E., Hunter, E. J., Spielman, J., &
Ramig, L. O. (2009). Suitability of dysphonia measurements
for telemonitoring of Parkinson’s disease. IEEE Transactions
on Biomedical Engineering, 56(4), 1015–1022.

[9] Goberman, A. M., & Coelho, C. A. (2002). Acoustic analysis
of Parkinsonian speech I: Speech characteristics and L-Dopa
therapy. NeuroRehabilitation, 17(3), 237–246.

[10] Esteva, A., Kuprel, B., Novoa, R. A., et al. (2017).
Dermatologist-level classification of skin cancer with deep
neural networks. Nature, 542(7639), 115–118.

[11] Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B.
(2017). What do we need to build explainable AI systems for
the medical domain?. arXiv preprint arXiv:1712.09923.

[12] Sakar, B. E., Isenkul, M. E., Sakar, C. O., et al. (2013).
Collection and analysis of a Parkinson speech dataset with
multiple types of sound recordings. IEEE Journal of Biomedical
and Health Informatics, 17(4), 828–834.

[13] Dua, D., & Graff, C. (2019). UCI Machine Learning Repos-
itory [https://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

[14] Bayat, A., Pomplun, M., & Tran, D. A. (2017). A study
on human activity recognition using accelerometer data from
smartphones. Procedia Computer Science, 34, 450–457.

[15] Tsanas, A., Little, M. A., McSharry, P. E., & Ramig, L. O.
(2010). Accurate telemonitoring of Parkinson’s disease pro-
gression by non-invasive speech tests. IEEE Transactions on
Biomedical Engineering, 57(4), 884–893.

[16] Little, M. A., McSharry, P. E., Hunter, E. J., Spielman, J., &
Ramig, L. O. (2009). Suitability of dysphonia measurements
for telemonitoring of Parkinson’s disease. IEEE Transactions
on Biomedical Engineering, 56(4), 1015–1022.

[17] Das, R. (2010). A comparison of multiple classification meth-
ods for diagnosis of Parkinson disease. Expert Systems with
Applications, 37(2), 1568–1572.

[18] Sakar, B. E., Isenkul, M. E., Sakar, C. O., et al. (2013).
Collection and analysis of a Parkinson speech dataset with
multiple types of sound recordings. IEEE Journal of Biomedical
and Health Informatics, 17(4), 828–834.

[19] Wroge, T. J., Oztoprak, H., Madani, A., & Spanakis, E. G.
(2018). Parkinson’s disease diagnosis using machine learning
and voice. The Journal of the Acoustical Society of America,
143(4), EL278–EL283.

[20] Arora, A., Sharma, M., & Mittal, A. (2019). Detecting Parkin-
son’s disease using deep learning and spectrogram analysis of
voice. Cognitive Systems Research, 55, 59–65.

[21] Xie, F., Xiao, H., & Sun, W. (2020). Parkinson’s disease
detection using a hybrid deep autoencoder and SVM model.
Computer Methods and Programs in Biomedicine, 197, 105688.
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